The overlooked role of a biotin precursor for marine bacteria - desthiobiotin as an escape route for biotin auxotrophy

海洋细菌中生物素前体被忽视的作用——脱硫生物素作为生物素营养缺陷的逃生途径

阅读:6
作者:Gerrit Wienhausen, Stefan Bruns, Sabiha Sultana, Leon Dlugosch, Luna-Agrippina Groon, Heinz Wilkes, Meinhard Simon

Abstract

Biotin (vitamin B7) is involved in a wide range of essential biochemical reactions and a crucial micronutrient that is vital for many pro- and eukaryotic organisms. The few biotin measurements in the world's oceans show that availability is subject to strong fluctuations. Numerous marine microorganisms exhibit biotin auxotrophy and therefore rely on supply by other organisms. Desthiobiotin is the primary precursor of biotin and has recently been detected at concentrations similar to biotin in seawater. The last enzymatic reaction in the biotin biosynthetic pathway converts desthiobiotin to biotin via the biotin synthase (BioB). The role of desthiobiotin as a precursor of biotin synthesis in microbial systems, however, is largely unknown. Here we demonstrate experimentally that bacteria can overcome biotin auxotrophy if they retain the bioB gene and desthiobiotin is available. A genomic search of 1068 bacteria predicts that the biotin biosynthetic potential varies greatly among different phylogenetic groups and that 20% encode solely bioB and thus can potentially overcome biotin auxotrophy. Many Actino- and Alphaproteobacteria cannot synthesize biotin de novo, but some possess solely bioB, whereas the vast majority of Gammaproteobacteria and Flavobacteriia exhibit the last four crucial biotin synthesis genes. We detected high intra- and extracellular concentrations of the precursor relative to biotin in the prototrophic bacterium, Vibrio campbellii, with extracellular desthiobiotin reaching up to 1.09 ± 0.15*106 molecules per cell during exponential growth. Our results provide evidence for the ecological role of desthiobiotin as an escape route to overcome biotin auxotrophy for bacteria in the ocean and presumably in other ecosystems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。