Hypoxia Restrains Lipid Utilization via Protein Kinase A and Adipose Triglyceride Lipase Downregulation through Hypoxia-Inducible Factor

缺氧通过蛋白激酶 A 抑制脂质利用,并通过缺氧诱导因子下调脂肪甘油三酯脂肪酶

阅读:6
作者:Ji Seul Han #, Jung Hyun Lee #, Jinuk Kong, Yul Ji, Jiwon Kim, Sung Sik Choe, Jae Bum Kim

Abstract

Oxygen is a key molecule for efficient energy production in living organisms. Although aerobic organisms have adaptive processes to survive in low-oxygen environments, it is poorly understood how lipolysis, the first step of energy production from stored lipid metabolites, would be modulated during hypoxia. Here, we demonstrate that fasting-induced lipolysis is downregulated by hypoxia through the hypoxia-inducible factor (HIF) signaling pathway. In Caenorhabditis elegans and mammalian adipocytes, hypoxia suppressed protein kinase A (PKA)-stimulated lipolysis, which is evolutionarily well conserved. During hypoxia, the levels of PKA activity and adipose triglyceride lipase (ATGL) protein were downregulated, resulting in attenuated fasting-induced lipolysis. In worms, HIF stabilization was sufficient to moderate the suppressive effect of hypoxia on lipolysis through ATGL and PKA inhibition. These data suggest that HIF activation under hypoxia plays key roles in the suppression of lipolysis, which might preserve energy resources in both C. elegans and mammalian adipocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。