Zedoarondiol inhibits atherosclerosis by regulating monocyte migration and adhesion via CXCL12/CXCR4 pathway

莪术二醇通过 CXCL12/CXCR4 通路调节单核细胞迁移和粘附来抑制动脉粥样硬化

阅读:4
作者:Hua Chai, Hua Qu, Shan He, Lei Song, Yu Yang, Hongbo Huang, Dazhuo Shi

Abstract

Atherosclerosis (AS) is an essential pathological changes of ischemic cardio-cerebrovascular disease, and monocyte migration and adhesion to endothelial cells are the critical pathological process in AS. Our previous studies demonstrated a beneficial effect of zedoarondiol in AS, but whether the mechanism is associated with monocyte migration and adhesion to endothelial cells remains unclear. In this study, we investigated whether the anti-atherosclerotic effects of zedoarondiol were associated with decreasing migration and adhesion of monocytes. The oil red O staining demonstrated that zedoarondiol ameliorated AS plaques in en face aorta and aortic root of apolipoprotein E gene knocked (apoE-/-) mice. In vitro, zedoarondiol decreased human monocytic macrophage-like cell line (THP-1) monocytes migration and adhesion to endothelial cells. Single-cell RNA sequencing analysis (scRNA-seq) in mice indicated that zedoarondiol decreased monocytes adhesion to endothelial cells by regulating CXC chemokine ligand 12/CXC chemokine receptor 4 (CXCL12/CXCR4) pathway, which was verified by Western blot of THP-1 monocytes;zedoarondiol also decreased the expressions of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT) and nuclear factor-kappa B (NF/κB), the downstream proteins of CXCL12/CXCR4 pathway. In conclusion, zedoarondiol ameliorated AS plaque and inhibited monocyte migration and adhesion to endothelial cells via regulating CXCL12/CXCR4 pathway, suggesting that zedoarondiol might be a new promising drug for AS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。