Antibody Surface Coverage Drives Matrix Interference in Microfluidic Capillary Immunoassays

抗体表面覆盖驱动微流体毛细管免疫测定中的基质干扰

阅读:7
作者:Ana I Barbosa, Alexander D Edwards, Nuno M Reis

Abstract

The performance of biosensors is often optimized in buffers, which brings inconsistencies during applications with biological samples. Current strategies for minimizing sample (matrix) interference are complex to automate and miniaturize, involving, e.g., sample dilution or recovery of serum/plasma. This study shows the first systematic analysis using hundreds of actual microfluidic immunoassay fluoropolymer strips to understand matrix interference in microflow systems. As many interfering factors are assay-specific, we have explored matrix interference for a range of enzymatic immunoassays, including a direct mIgG/anti-mIgG, a sandwich cancer biomarker PSA, and a sandwich inflammatory cytokine IL-1β. Serum matrix interference was significantly affected by capillary antibody surface coverage, suggesting for the first time that the main cause of the serum matrix effect is low-affinity serum components (e.g., autoantibodies) competing with high-affinity antigens for the immobilized antibody. Additional experiments carried out with different capillary diameters confirmed the importance of antibody surface coverage in managing matrix interference. Building on these findings, we propose a novel analytical approach where antibody surface coverage and sample incubation times are key for eliminating and/or minimizing serum matrix interference, consisting in bioassay optimization carried out in serum instead of buffer, without compromising the performance of the bioassay or adding extra cost or steps. This will help establishing a new route toward faster development of modern point-of-care tests and effective biosensor development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。