Bi-allelic Mutations in LSS, Encoding Lanosterol Synthase, Cause Autosomal-Recessive Hypotrichosis Simplex

编码羊毛甾醇合酶的 LSS 双等位基因突变导致常染色体隐性单纯性少毛症

阅读:9
作者:Maria-Teresa Romano, Aylar Tafazzoli, Maximilian Mattern, Sugirthan Sivalingam, Sabrina Wolf, Alexander Rupp, Holger Thiele, Janine Altmüller, Peter Nürnberg, Jürgen Ellwanger, Reto Gambon, Alessandra Baumer, Nicolai Kohlschmidt, Dieter Metze, Stefan Holdenrieder, Ralf Paus, Dieter Lütjohann, Jorge

Abstract

Hypotrichosis simplex (HS) is a rare form of hereditary alopecia characterized by childhood onset of diffuse and progressive scalp and body hair loss. Although research has identified a number of causal genes, genetic etiology in about 50% of HS cases remains unknown. The present report describes the identification via whole-exome sequencing of five different mutations in the gene LSS in three unrelated families with unexplained, potentially autosomal-recessive HS. Affected individuals showed sparse to absent lanugo-like scalp hair, sparse and brittle eyebrows, and sparse eyelashes and body hair. LSS encodes lanosterol synthase (LSS), which is a key enzyme in the cholesterol biosynthetic pathway. This pathway plays an important role in hair follicle biology. After localizing LSS protein expression in the hair shaft and bulb of the hair follicle, the impact of the mutations on keratinocytes was analyzed using immunoblotting and immunofluorescence. Interestingly, wild-type LSS was localized in the endoplasmic reticulum (ER), whereas mutant LSS proteins were localized in part outside of the ER. A plausible hypothesis is that this mislocalization has potential deleterious implications for hair follicle cells. Immunoblotting revealed no differences in the overall level of wild-type and mutant protein. Analyses of blood cholesterol levels revealed no decrease in cholesterol or cholesterol intermediates, thus supporting the previously proposed hypothesis of an alternative cholesterol pathway. The identification of LSS as causal gene for autosomal-recessive HS highlights the importance of the cholesterol pathway in hair follicle biology and may facilitate novel therapeutic approaches for hair loss disorders in general.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。