The Bridging Effect of Controlled-Release Glial Cell-Derived Neurotrophic Factor Microcapsules within Nerve Conduits on Rat Facial Nerve Regeneration

神经导管内控释胶质细胞源性神经营养因子微囊对大鼠面神经再生的桥接作用

阅读:6
作者:Siwen Xia #, Mingxing Zhang #, Meng Li #, Xianmin Song, Donghui Chen, Minhui Zhu, Hongliang Zheng, Shicai Chen

Conclusion

The stable slow-release GNDF microcapsule inside the biodegradable nerve conduit can reduce the extent of incorrect growth of the facial nerve neuron when bridging the dissected rat facial nerve trunk. The technique has a good effect on functional nerve recovery.

Methods

The PLGA/chitosan composite nerve conduit was used to bridge the dissected trunk of the rat facial nerve. GDNF microcapsules were loaded into the nerve conduit. Nine weeks after surgery, the facial nerve zygomatic and buccal branches were labeled with fluorescent indicators. The incorrectly grown facial neurons were reversed and counted. The facial nerve functional recovery was assessed by measuring the maximum evoked potential.

Results

The nerve conduit was filled with different regenerating factors, such as the GDNF, GDNF microcapsules, or saline (control). The number of incorrectly regenerated neurons was lower with the nerve conduits filled with GDNF microcapsules than with those supplied with just the GDNF. However, neither the GDNF nor GDNF microcapsules affected the number of regenerated neurons. The functional recovery of the facial nerve was the best, with the nerve conduit filled with GDNF microcapsules closest to the healthy uncut facial nerve.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。