MicroRNA-210-mediated mtROS confer hypoxia-induced suppression of STOCs in ovine uterine arteries

MicroRNA-210 介导的 mtROS 可抑制绵羊子宫动脉中缺氧诱导的 STOC

阅读:8
作者:Xiang-Qun Hu, Rui Song, Chiranjib Dasgupta, Monica Romero, Rucha Juarez, Jenna Hanson, Arlin B Blood, Sean M Wilson, Lubo Zhang

Background and purpose

Hypoxia during pregnancy is associated with increased uterine vascular resistance and elevated blood pressure both in women and female sheep. A previous study demonstrated a causal role of microRNA-210 (miR-210) in gestational hypoxia-induced suppression of Ca2+ sparks/spontaneous transient outward currents (STOCs) in ovine uterine arteries, but the underlying mechanisms remain undetermined. We tested the hypothesis that miR-210 perturbs mitochondrial metabolism and increases mitochondrial reactive oxygen species (mtROS) that confer hypoxia-induced suppression of STOCs in uterine arteries. Experimental approach: Resistance-sized uterine arteries were isolated from near-term pregnant sheep and were treated ex vivo in normoxia and hypoxia (10.5% O2 ) for 48 h. Key

Purpose

Hypoxia during pregnancy is associated with increased uterine vascular resistance and elevated blood pressure both in women and female sheep. A previous study demonstrated a causal role of microRNA-210 (miR-210) in gestational hypoxia-induced suppression of Ca2+ sparks/spontaneous transient outward currents (STOCs) in ovine uterine arteries, but the underlying mechanisms remain undetermined. We tested the hypothesis that miR-210 perturbs mitochondrial metabolism and increases mitochondrial reactive oxygen species (mtROS) that confer hypoxia-induced suppression of STOCs in uterine arteries. Experimental approach: Resistance-sized uterine arteries were isolated from near-term pregnant sheep and were treated ex vivo in normoxia and hypoxia (10.5% O2 ) for 48 h. Key

Results

Hypoxia increased mtROS and suppressed mitochondrial respiration in uterine arteries, which were also produced by miR-210 mimic to normoxic arteries and blocked by antagomir miR-210-LNA in hypoxic arteries. Hypoxia or miR-210 mimic inhibited Ca2+ sparks/STOCs and increased uterine arterial myogenic tone, which were inhibited by the mitochondria-targeted antioxidant MitoQ. Hypoxia and miR-210 down-regulated iron-sulfur cluster scaffold protein (ISCU) in uterine arteries and knockdown of ISCU via siRNAs suppressed mitochondrial respiration, increased mtROS, and inhibited STOCs. In addition, blockade of mitochondrial electron transport chain with antimycin and rotenone inhibited large-conductance Ca2+ -activated K+ channels, decreased STOCs and increased uterine arterial myogenic tone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。