Notch signaling activation contributes to paclitaxel-induced neuropathic pain via activation of A1 astrocytes

Notch 信号激活通过激活 A1 星形胶质细胞促成紫杉醇诱发的神经性疼痛

阅读:4
作者:Dan-Yang Li, Shao-Jie Gao, Jia Sun, Long-Qing Zhang, Jia-Yi Wu, Fan-He Song, Dai-Qiang Liu, Ya-Qun Zhou, Wei Mei

Abstract

Paclitaxel-induced neuropathic pain (PINP) is a progressive and refractory side effect of chemotherapy with few effective treatments at present. It is well-established that astrocytes activation contributes to the development of PINP. Recent reports showed astrocytes can be divided into A1 and A2 phenotypes. However, whether the transformation of astrocytes participates in PINP and the underlying mechanisms remain unknown. As Notch signaling pathway have shown to be involved in neuropathic pain, we aimed to investigate the relationship between Notch signaling pathway and A1 astrocytes in PINP. Herein we found that both A1 astrocytes and Notch signaling were markedly activated in the spinal cord of PINP rats and the downstream molecules of Notch signaling were colocalized with A1 astrocytes. DAPT (an inhibitor of Notch signaling) not only suppressed the mechanical allodynia of PINP rats, but also inhibited the activation of Notch signaling pathway and A1 astrocytes. Furthermore, Jagged1 (a ligand of Notch1 receptors) dose-dependently induced mechanical hyperalgesia in naïve rats and simultaneously led to Notch signaling activation and A1 astrocytes transformation, all of which were inhibited by DAPT. Taken together, these results demonstrate Notch signaling activation contributes to PINP via A1 astrocytes activation, which provides a promising therapeutic target for PINP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。