Upregulation of endogenous TRAIL-elicited apoptosis is essential for metformin-mediated antitumor activity against TNBC and NSCLC

内源性 TRAIL 诱导的细胞凋亡上调对于二甲双胍介导的针对 TNBC 和 NSCLC 的抗肿瘤活性至关重要

阅读:4
作者:Shuang Liu, Erik V Polsdofer, Lukun Zhou, Sanbao Ruan, Hui Lyu, Defu Hou, Hao Liu, Ann D Thor, Zhimin He, Bolin Liu

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) shows promising antitumor activity in preclinical studies. However, the efficacy of recombinant TRAIL in clinical trials is compromised by its short serum half-life and low in vivo stability. Induction of endogenous TRAIL may overcome the limitations and become a new strategy for cancer treatment. Here, we discovered that metformin increased TRAIL expression and induced apoptosis in triple-negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC) cells. Metformin did not alter the expression of TRAIL receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). Metformin-upregulated TRAIL was secreted into conditioned medium (CM) and found to be functional, since the CM promoted TNBC cells undergoing apoptosis, which was abrogated by a recombinant TRAIL-R2-Fc chimera. Moreover, blockade of TRAIL binding to DR4/DR5 or specific knockdown of TRAIL expression significantly attenuated metformin-induced apoptosis. Studies with a tumor xenograft model revealed that metformin not only significantly inhibited tumor growth but also elicited apoptosis and enhanced TRAIL expression in vivo. Collectively, we have demonstrated that upregulation of TRAIL and activation of death receptor signaling are pivotal for metformin-induced apoptosis in TNBC and NSCLC cells. Our studies identify a novel mechanism of action of metformin exhibiting potent antitumor activity via induction of endogenous TRAIL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。