Geniposide ameliorates chronic unpredictable mild stress induced depression-like behavior through inhibition of ceramide-PP2A signaling via the PI3K/Akt/GSK3β axis

栀子苷通过 PI3K/Akt/GSK3β 轴抑制神经酰胺-PP2A 信号传导,改善慢性不可预测的轻度应激引起的抑郁样行为

阅读:4
作者:Meihua Wang #, Lei Yang #, Zhilin Chen #, Linlu Dai, Caihua Xi, Xing Wu, Gang Wu, Yang Wang, Jin Hu

Background

Depression is a severe mental disorder. Unfortunately, more than half of patients with major depression disorder cannot achieve remission after initial treatment with an antidepressant. Geniposide, a bioactive iridoid glycoside isolated from Gardenia jasminoides Ellis, can ameliorate depressive-like behaviors in mice. However, the underlying mechanism is still not very clear.

Conclusions

These results indicate that geniposide exert a potential antidepressant-like effect on CUMS mice, and its effect might be associated with activated PI3K/Akt/GSK3β signaling, reduced the level of ceramide and hippocampal neuron apoptosis.

Methods

The pharmacological methods including ELISA, immunofluorescence, and Western blot were used to investigate the role of geniposide on chronic unpredictable mild stress (CUMS)-induced depression mice.

Results

In this study, we found that geniposide could inhibit CUMS-induced depressive-like behaviors in mice. Geniposide is able to reduce the levels of ceramide and lower the activity of acid sphingomyelinase (ASM) in hippocampus; besides, ASM inhibitor (amitriptyline) can decrease the concentration of ceramide and ameliorate depressive-like behaviors of mice. Moreover, geniposide can also alleviate CUMS-induced hippocampal neuronal apoptosis and increase the phosphorylated form of PI3K, Akt, and GSK3β. Additionally, PI3K inhibitor (LY294002) can also abolish the neuroprotective effect of geniposide on hippocampal neurons in vitro. Conclusions: These results indicate that geniposide exert a potential antidepressant-like effect on CUMS mice, and its effect might be associated with activated PI3K/Akt/GSK3β signaling, reduced the level of ceramide and hippocampal neuron apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。