Functional hyperactivity in long QT syndrome type 1 pluripotent stem cell-derived sympathetic neurons

型长 QT 综合征多能干细胞衍生的交感神经元的功能性亢进

阅读:10
作者:Annika Winbo, Suganeya Ramanan, Emily Eugster, Annika Rydberg, Stefan Jovinge, Jonathan R Skinner, Johanna M Montgomery

Abstract

Sympathetic activation is an established trigger of life-threatening cardiac events in long QT syndrome type 1 (LQT1). KCNQ1 loss-of-function variants, which underlie LQT1, have been associated with both cardiac arrhythmia and neuronal hyperactivity pathologies. However, the LQT1 sympathetic neuronal phenotype is unknown. Here, we aimed to study human induced pluripotent stem cell (hiPSC)-derived sympathetic neurons (SNs) to evaluate neuronal functional phenotype in LQT1. We generated hiPSC-SNs from two patients with LQT1 with a history of sympathetically triggered arrhythmia and KCNQ1 loss-of-function genotypes (c.781_782delinsTC and p.S349W/p.R518X). Characterization of hiPSC-SNs was performed using immunohistochemistry, enzyme-linked immunosorbent assay, and whole cell patch clamp electrophysiology, and functional LQT1 hiPSC-SN phenotypes compared with healthy control (WT) hiPSC-SNs. hiPSC-SNs stained positive for tyrosine hydroxylase, peripherin, KCNQ1, and secreted norepinephrine. hiPSC-SNs at 60 ± 2.2 days in vitro had healthy resting membrane potentials (-60 ± 1.3 mV), and fired rapid action potentials with mature kinetics in response to stimulation. Significant hyperactivity in LQT1 hiPSC-SNs was evident via increased norepinephrine release, increased spontaneous action potential frequency, increased total inward current density, and reduced afterhyperpolarization, compared with age-matched WT hiPSC-SNs. A significantly higher action potential frequency upon current injection and larger synaptic current amplitudes in compound heterozygous p.S349W/p.R518X hiPSC-SNs compared with heterozygous c.781_782delinsTC hiPSC-SNs was also observed, suggesting a potential genotype-phenotype correlation. Together, our data reveal increased neurotransmission and excitability in heterozygous and compound heterozygous patient-derived LQT1 sympathetic neurons, suggesting that the cellular arrhythmogenic potential in LQT1 is not restricted to cardiomyocytes.NEW & NOTEWORTHY Here, we present the first study of patient-derived LQT1 sympathetic neurons that are norepinephrine secreting, and electrophysiologically functional, in vitro. Our data reveal a novel LQT1 sympathetic neuronal phenotype of increased neurotransmission and excitability. The identified sympathetic neuronal hyperactivity phenotype is of particular relevance as it could contribute to the mechanisms underlying sympathetically triggered arrhythmia in LQT1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。