Angiogenesis during coronal pulp regeneration using rat dental pulp cells: Neovascularization in rat molars in vivo and proangiogenic dental pulp cell-endothelial cell interactions in vitro

大鼠牙髓细胞在冠状牙髓再生过程中的血管生成:大鼠磨牙体内的新生血管形成和体外促血管生成的牙髓细胞-内皮细胞相互作用

阅读:6
作者:Zar Chi Thein Zaw, Nobuyuki Kawashima, Tomoatsu Kaneko, Takashi Okiji

Conclusion

Coronal pulp regeneration with rDPC/PLLA/Matrigel was accompanied by neovascularization. rDPC-rDMEC interactions may promote angiogenic activity represented by proangiogenic factor upregulation and tube formation in vitro.

Methods

Maxillary first molars of Wistar rats (n = 42) were pulpotomized and rDPCs isolated from incisors were implanted with a porous poly (l-lactic acid) (PLLA) scaffold and hydrogel (Matrigel). After 3, 7, and 14 days, coronal pulp tissues were examined histologically and by nestin and CD146 immunohistochemistry. rDPCs and rat dermal microvascular endothelial cells (rDMECs) were cocultured for 4 days and vascular endothelial growth factor (VEGF) synthesis and angiogenic factor gene expression were determined by enzyme-linked immunosorbent assays and real-time polymerase chain reaction, respectively. Effects of cocultured medium on tube formation by rDMECs were also evaluated.

Purpose

Angiogenesis is considered a crucial event for dental pulp regeneration. The purpose of this study was to demonstrate neovascularization during coronal pulp regeneration in rat molars using rat dental pulp cells (rDPCs) and to examine whether rDPC-endothelial cell interactions promote proangiogenic capacity in vitro. Materials and

Results

Implantation of rDPC/PLLA/Matrigel induced coronal pulp regeneration with dentin bridge formation and arrangement of nestin-positive odontoblast-like cells at 14 days. PLLA/Matrigel without rDPCs did not induce pulp regeneration. CD146-positive blood vessels increased in density in the remaining pulp tissues at 3 and 7 days, and in the regenerated pulp tissue at 14 days. rDPC/DMEC coculture significantly promoted VEGF secretion and mRNA expression of nuclear factor-kappa B, angiogenic chemokine CXCL1, and chemokine receptor CXCR1. Cocultured medium significantly promoted tube formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。