Engineering heterologous enzyme secretion in Yarrowia lipolytica

工程化解脂耶氏酵母中的异源酶分泌

阅读:8
作者:Weigao Wang, Mark A Blenner

Background

Eukaryotic cells are often preferred for the production of complex enzymes and biopharmaceuticals due to their ability to form post-translational modifications and inherent quality control system within the endoplasmic reticulum (ER). A non-conventional yeast species, Yarrowia lipolytica, has attracted attention due to its high protein secretion capacity and advanced secretory pathway. Common means of improving protein secretion in Y. lipolytica include codon optimization, increased gene copy number, inducible expression, and secretory tag engineering. In this study, we develop effective strategies to enhance protein secretion using the model heterologous enzyme T4 lysozyme.

Conclusions

Overall, our combined strategies not only proved effective in improving the protein production in Yarrowia lipolytica, but also hint the possible existence of a different mechanism of secretion regulation in ER and Golgi body in this non-conventional yeast.

Results

By engineering the commonly used native lip2prepro secretion signal, we have successfully improved secreted T4 lysozyme titer by 17-fold. Similar improvements were measured for other heterologous proteins, including hrGFP and [Formula: see text]-amylase. In addition to secretion tag engineering, we engineered the secretory pathway by expanding the ER and co-expressing heterologous enzymes in the secretion tag processing pathway, resulting in combined 50-fold improvement in T4 lysozyme secretion. Conclusions: Overall, our combined strategies not only proved effective in improving the protein production in Yarrowia lipolytica, but also hint the possible existence of a different mechanism of secretion regulation in ER and Golgi body in this non-conventional yeast.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。