The potassium channel auxiliary subunit Kvβ2 (Kcnab2) regulates Kv1 channels and dopamine neuron firing

钾通道辅助亚基 Kvβ2 (Kcnab2) 调节 Kv1 通道和多巴胺神经元放电

阅读:4
作者:Joshua X Yee, Ariana Rastani, Marta E Soden

Abstract

Ion channel complexes typically consist of both pore-forming subunits and auxiliary subunits that do not directly conduct current but can regulate trafficking or alter channel properties. Isolating the role of these auxiliary subunits in neurons has proved difficult due to a lack of specific pharmacological agents and the potential for developmental compensation in constitutive knockout models. Here, we use cell-type-specific viral-mediated CRISPR/Cas9 mutagenesis to target the potassium channel auxiliary subunit Kvβ2 (Kcnab2) in dopamine neurons in the adult mouse brain. We find that mutagenesis of Kcnab2 reduces surface expression of Kv1.2, the primary Kv1 pore-forming subunit expressed in dopamine neurons, and shifts the voltage dependence of inactivation of potassium channel currents toward more hyperpolarized potentials. Loss of Kcnab2 broadens the action potential waveform in spontaneously firing dopamine neurons recorded in slice, reduces the afterhyperpolarization amplitude, and increases spike timing irregularity and excitability, all of which is consistent with a reduction in potassium channel current. Similar effects were observed with mutagenesis of the pore-forming subunit Kv1.2 (Kcna2). These results identify Kv1 currents as important contributors to dopamine neuron firing and demonstrate a role for Kvβ2 subunits in regulating the trafficking and gating properties of these ion channels. Furthermore, they demonstrate the utility of CRISPR-mediated mutagenesis in the study of previously difficult to isolate ion channel subunits.NEW & NOTEWORTHY Here, we utilize CRISPR/Cas9-mediated mutagenesis in dopamine neurons in mice to target the gene encoding Kvβ2, an auxiliary subunit that forms a part of Kv1 channel complexes. We find that the absence of Kvβ2 alters action potential properties by reducing surface expression of pore-forming subunits and shifting the voltage dependence of channel inactivation. This work establishes a new function for Kvβ2 subunits and Kv1 complexes in regulating dopamine neuron activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。