Gene copy number and negative feedback differentially regulate transcriptional variability of segmentation clock genes

基因拷贝数和负反馈差异调节分节时钟基因的转录变异

阅读:5
作者:Oriana Q H Zinani, Kemal Keseroğlu, Supravat Dey, Ahmet Ay, Abhyudai Singh, Ertuğrul M Özbudak

Abstract

Timely progression of a genetic program is critical for embryonic development. However, gene expression involves inevitable fluctuations in biochemical reactions leading to substantial cell-to-cell variability (gene expression noise). One of the important questions in developmental biology is how pattern formation is reproducibly executed despite these unavoidable fluctuations in gene expression. Here, we studied the transcriptional variability of two paired zebrafish segmentation clock genes (her1 and her7) in multiple genetic backgrounds. Segmentation clock genes establish an oscillating self-regulatory system, presenting a challenging yet beautiful system in studying control of transcription variability. In this study, we found that a negative feedback loop established by the Her1 and Her7 proteins minimizes uncorrelated variability whereas gene copy number affects variability of both RNAs in a similar manner (correlated variability). We anticipate that these findings will help analyze the precision of other natural clocks and inspire the ideas for engineering precise synthetic clocks in tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。