Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration

肠道类器官的机械区室化使隐窝折叠和集体细胞迁移成为可能

阅读:5
作者:Carlos Pérez-González #, Gerardo Ceada #, Francesco Greco, Marija Matejčić, Manuel Gómez-González, Natalia Castro, Anghara Menendez, Sohan Kale, Denis Krndija, Andrew G Clark, Venkata Ram Gannavarapu, Adrián Álvarez-Varela, Pere Roca-Cusachs, Eduard Batlle, Danijela Matic Vignjevic, Marino Arroyo, X

Abstract

Intestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are at present unknown. Here we map three-dimensional cellular forces in mouse intestinal organoids grown on soft hydrogels. We show that these organoids exhibit a non-monotonic stress distribution that defines mechanical and functional compartments. The stem cell compartment pushes the extracellular matrix and folds through apical constriction, whereas the transit amplifying zone pulls the extracellular matrix and elongates through basal constriction. The size of the stem cell compartment depends on the extracellular-matrix stiffness and endogenous cellular forces. Computational modelling reveals that crypt shape and force distribution rely on cell surface tensions following cortical actomyosin density. Finally, cells are pulled out of the crypt along a gradient of increasing tension. Our study unveils how patterned forces enable compartmentalization, folding and collective migration in the intestinal epithelium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。