Berberine-mediated REDD1 down-regulation ameliorates senescence of retinal pigment epithelium by interrupting the ROS-DDR positive feedback loop

小檗碱介导的 REDD1 下调通过中断 ROS-DDR 正反馈回路改善视网膜色素上皮的衰老

阅读:4
作者:Qingqiu Chen, Guang Xin, Shiyi Li, Yuman Dong, Xiuxian Yu, Chengyu Wan, Zeliang Wei, Yuda Zhu, Kun Zhang, Yilan Wang, Fan Li, Cuicui Zhang, E Wen, Yulong Li, Hai Niu, Wen Huang

Background

Accumulation of age-associated senescent cells accompanied with increased reactive oxygen species (ROS) and inflammatory factors contributes to the progression of age-related macular degeneration (AMD), the main cause of blindness in the elderly. Berberine (BBR) has shown efficacy in the treatment of age-related diseases including diabetes and obesity by decreasing ROS. However, the pharmacological effect of BBR on alleviating retinal aging remains largely unknown.

Conclusion

BBR down-regulates REDD1 expression to interrupt the ROS-DDR positive feedback loop and restore autophagic flux, thereby reducing premature senescence of RPE. Our findings elucidate the promising effects of REDD1 on cellular senescence and the great potential of BBR as a therapeutic approach.

Methods

D-galactose (DG)-induced ARPE-19 cell senescence and retinal aging were employed to evaluate the anti-aging effect of BBR in vivo and in vitro. The siRNA transfection, Western-Blot analyses, SA-β-Gal assay and immunofluorescence were performed to investigate the potential mechanisms of BBR on anti-aging of RPE.

Purpose

Our study aimed to investigate the pharmacological effect of BBR as an anti-aging agent in retinal aging and its further molecular mechanisms.

Results

In RPE-choroid of both natural aged and DG-induced accelerated aged mice, oxidative stress was increased along with the up-regulation of p21 expression, which was ameliorated by BBR treatment. BBR down-regulated the expression of REDD1 to decrease intracellular ROS content, attenuating DG-induced senescence in vitro and in vivo. Furthermore, p53 instead of HIF-1α was identified as the transcriptional regulator of REDD1 in DG-induced premature senescence. Importantly, NAC and BBR reversed the expression of p53 and the content of 8-OHdG, indicating that the positive feedback loop of ROS-DNA damage response (DDR) was formed, and BBR interrupted this feedback loop to alleviate DG-induced premature senescence by reducing REDD1 expression. In addition, BBR restored DG-damaged autophagy flux by up-regulating TFEB-mediated lysosomal biosynthesis by inhibiting REDD1 expression, thereby attenuating cellular senescence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。