Distinct functions of three chromatin remodelers in activator binding and preinitiation complex assembly

三种染色质重塑剂在激活剂结合和前启动复合物组装中的不同功能

阅读:3
作者:Yashpal Rawal, Hongfang Qiu, Alan G Hinnebusch

Abstract

The nucleosome remodeling complexes (CRs) SWI/SNF, RSC, and Ino80C cooperate in evicting or repositioning nucleosomes to produce nucleosome depleted regions (NDRs) at the promoters of many yeast genes induced by amino acid starvation. We analyzed mutants depleted of the catalytic subunits of these CRs for binding of transcriptional activator Gcn4 and recruitment of TATA-binding protein (TBP) during preinitiation complex (PIC) assembly. RSC and Ino80 were found to enhance Gcn4 binding to both UAS elements in NDRs upstream of promoters and to unconventional binding sites within nucleosome-occupied coding sequences; and SWI/SNF contributes to UAS binding when RSC is depleted. All three CRs are actively recruited by Gcn4 to most UAS elements and appear to enhance Gcn4 binding by reducing nucleosome occupancies at the binding motifs, indicating a positive regulatory loop. SWI/SNF acts unexpectedly in WT cells to prevent excessive Gcn4 binding at many UAS elements, indicating a dual mode of action that is modulated by the presence of RSC. RSC and SWI/SNF collaborate to enhance TBP recruitment at Gcn4 target genes, together with Ino80C, in a manner associated with nucleosome eviction at the TBP binding sites. Cooperation among the CRs in TBP recruitment is also evident at the highly transcribed ribosomal protein genes, while RSC and Ino80C act more broadly than SWI/SNF at the majority of other constitutively expressed genes to stimulate this step in PIC assembly. Our findings indicate a complex interplay among the CRs in evicting promoter nucleosomes to regulate activator binding and stimulate PIC assembly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。