Conclusion
miR-30d-5p ameliorates LPS-induced ALI via activating AMPKα and it is a valuable therapeutic candidate in the treatment of ALI.
Methods
Mice were intravenously treated with miR-30d-5p agomir, antagomir or their respective controls for 3 consecutive days and then were exposed to a single intratracheal injection of lipopolysaccharide (LPS) for 12 h at a dosage of 5 mg/kg to induce ALI. To inhibit adenosine monophosphate-activated protein kinase α (AMPKα) or phosphodiesterase 4 D (PDE4D), compound C (CpC) and rolipram were used.
Results
miR-30d-5p expression in the lungs was significantly inhibited by LPS treatment. miR-30d-5p agomir significantly alleviated, while miR-30d-5p antagomir aggravated pulmonary inflammation, oxidative damage, and dysfunction in ALI mice. Besides, we found that miR-30d-5p agomir ameliorated LPS-induced ALI via activating AMPKα and that the inhibition of AMPKα by CpC completely abolished these beneficial effects of miR-30d-5p agomir. Further findings validated that PDE4D downregulation was required for the activation of AMPKα by miR-30d-5p agomir.
