Identification of Autophagy-Related Genes as Targets for Senescence Induction Using a Customizable CRISPR-Based Suicide Switch Screen

使用可定制的基于 CRISPR 的自杀开关筛选鉴定自噬相关基因作为衰老诱导的靶标

阅读:6
作者:Arnout Schepers, Fleur Jochems, Cor Lieftink, Liqin Wang, Ziva Pogacar, Rodrigo Leite de Oliveira, Giulia De Conti, Roderick L Beijersbergen, Rene Bernards

Abstract

Pro-senescence therapies are increasingly being considered for the treatment of cancer. Identifying additional targets to induce senescence in cancer cells could further enable such therapies. However, screening for targets whose suppression induces senescence on a genome-wide scale is challenging, as senescent cells become growth arrested, and senescence-associated features can take 1 to 2 weeks to develop. For a screen with a whole-genome CRISPR library, this would result in billions of undesirable proliferating cells by the time the senescent features emerge in the growth arrested cells. Here, we present a suicide switch system that allows genome-wide CRISPR screening in growth-arrested subpopulations by eliminating the proliferating cells during the screen through activation of a suicide switch in proliferating cells. Using this system, we identify in a genome-scale CRISPR screen several autophagy-related proteins as targets for senescence induction. We show that inhibiting macroautophagy with a small molecule ULK1 inhibitor can induce senescence in cancer cell lines of different origin. Finally, we show that combining ULK1 inhibition with the senolytic drug ABT-263 leads to apoptosis in a panel of cancer cell lines. IMPLICATIONS: Our suicide switch approach allows for genome-scale identification of pro-senescence targets, and can be adapted to simplify other screens depending on the nature of the promoter used to drive the switch.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。