Thermo-TRP channels are involved in BAT thermoregulation in cold-acclimated Brandt's voles

Thermo-TRP 通道参与适应寒冷气候的布氏田鼠的 BAT 体温调节

阅读:6
作者:Jinzhen Lv, Liqiu Tang, Xueying Zhang, Dehua Wang

Abstract

Transient receptor potential (TRP) channels, which can sense temperature, pressure and mechanical stimuli, were involved in many physiological and biochemical reactions. Whether thermosensitive TRP channels (Thermo-TRPs) are involved in thermoregulation in small mammals is still not clear. We measured the changes of thermo-TRPs at 4 °C, 23 °C and 30 °C in Brandt's voles (Lasiopodomys brandtii) to test the hypothesis that Thermo-TRPs are involved in cold-induced thermogenesis of brown adipose tissue (BAT) in small mammals. Results showed that air temperatures had no effect on body mass and rectal temperature, but the food intake and basal metabolic rate (BMR) in the 4 °C group were significantly higher than in the 30 °C group. Compared with 30 °C group, the protein contents of uncoupling protein 1(UCP1), TRP vanilloid 2 (TRPV2), TRP ankyrin 1 (TRPA1), TRP melastatin 2 (TRPM2), silent Information Regulator T1 (SIRT1), AMP-activated protein kinase (AMPK) and Calcium/calmodulin-dependent protein kinase II (CaMKII) in BAT increased significantly in 4 °C group, but there was no significant difference in the protein content of Thermo-TRPs in the hypothalamus among groups. Further, the expression of PRDM16 (PR domain containing 16) in inguinal white adipose tissue (iWAT) at 4 °C was significantly higher than that at 30 °C, but no difference was observed in the expression of other browning-related genes or TRPV2. In conclusion, TRP channels may participate in BAT thermoregulation through the CaMKII, AMPK, SIRT1 and UCP1 pathway in cold-acclimated Brandt's voles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。