Intra-vessel heterogeneity establishes enhanced sites of macromolecular leakage downstream of laminin α5

血管内异质性导致层粘连蛋白α5下游大分子泄漏位点增多

阅读:7
作者:Mark Richards, Sagnik Pal, Elin Sjöberg, Pernilla Martinsson, Lakshmi Venkatraman, Lena Claesson-Welsh

Abstract

Endothelial cells display heterogeneous properties based on location and function. How this heterogeneity influences endothelial barrier stability both between and within vessel subtypes is unexplored. In this study, we find that endothelial cells exhibit heterogeneous barrier properties on inter-organ and intra-vessel levels. Using intravital microscopy and sequential stimulation of the ear dermis with vascular endothelial growth factor-A (VEGFA) and/or histamine, we observe distinct, reappearing sites, common for both agonists, where leakage preferentially takes place. Through repetitive stimulation of the diaphragm and trachea, we find inter-organ conservation of such predetermined leakage sites. Qualitatively, predetermined sites display distinct leakage properties and enhanced barrier breakdown compared to less susceptible regions. Mechanistically, laminin α5 is reduced at predetermined sites, which is linked to reduced junctional vascular endothelial (VE)-cadherin and enhanced VEGFA-induced VE-cadherin phosphorylation. These data highlight functional intra-vessel heterogeneity that defines predetermined sites with distinct leakage properties and that may disproportionately impact pathological vascular leakage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。