Mitotane Targets Lipid Droplets to Induce Lipolysis in Adrenocortical Carcinoma

米托坦靶向脂滴诱导肾上腺皮质癌中的脂肪分解

阅读:1
作者:Kate M Warde ,Yi Jan Lim ,Eduardo Ribes Martinez ,Felix Beuschlein ,Paula O'Shea ,Constanze Hantel ,Michael Conall Dennedy

Abstract

Introduction: Adrenocortical carcinoma (ACC) is a rare aggressive cancer with low overall survival. Adjuvant mitotane improves survival but is limited by poor response rates and resistance. Mitotane's efficacy is attributed to the accumulation of toxic free cholesterol, predominantly through cholesterol storage inhibition. However, targeting this pathway has proven unsuccessful. We hypothesize that mitotane-induced free-cholesterol accumulation is also mediated through enhanced breakdown of lipid droplets. Methodology: ATCC-H295R (mitotane-sensitive) and MUC-1 (mitotane-resistant) ACC cells were evaluated for lipid content using specific BODIPY dyes. Protein expression was evaluated by immunoblotting and flow cytometry. Cell viability was measured by quantifying propidium iodide-positive cells following mitotane treatment and pharmacological inhibitors of lipolysis. Results: H295R and MUC-1 cells demonstrated similar neutral lipid droplet numbers at baseline. However, evaluation of lipid machinery demonstrated distinct profiles in each model. Analysis of intracellular lipid droplet content showed H295R cells preferentially store cholesteryl esters, whereas MUC-1 cells store triacylglycerol. Decreased lipid droplets were associated with increased lipolysis in H295R and in MUC-1 at toxic mitotane concentrations. Pharmacological inhibition of lipolysis attenuated mitotane-induced toxicity in both models. Conclusion: We highlight that lipid droplet breakdown and activation of lipolysis represent a putative additional mechanism for mitotane-induced cytotoxicity in ACC. Further understanding of cholesterol and lipids in ACC offers potential novel therapeutic exploitation, especially in mitotane-resistant disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。