Significance
We describe a maleimide-functionalized gelatin hydrogel that can be crosslinked via a thiol-maleimide mediated click reaction to form a stable hydrogel without the production of reactive oxygen species typical in light-based crosslinking. The mechanical properties can be tuned to match the in vivo bone marrow microenvironment for hematopoietic stem cell culture. Additionally, we report inclusion of a peptide crosslinker that can be cleaved via the proteolytic action of Sortase A and show that Sortase A exposure does not degrade sensitive surface marker expression patterns. Together, this approach reduces stem cell exposure to reactive oxygen species during hydrogel gelation and enables post-culture quantitative assessment of stem cell phenotype.
Statement of significance
We describe a maleimide-functionalized gelatin hydrogel that can be crosslinked via a thiol-maleimide mediated click reaction to form a stable hydrogel without the production of reactive oxygen species typical in light-based crosslinking. The mechanical properties can be tuned to match the in vivo bone marrow microenvironment for hematopoietic stem cell culture. Additionally, we report inclusion of a peptide crosslinker that can be cleaved via the proteolytic action of Sortase A and show that Sortase A exposure does not degrade sensitive surface marker expression patterns. Together, this approach reduces stem cell exposure to reactive oxygen species during hydrogel gelation and enables post-culture quantitative assessment of stem cell phenotype.
