Genetic loss-of-function of activating transcription factor 3 but not C-type lectin member 5A prevents diabetic peripheral neuropathy

激活转录因子 3 而非 C 型凝集素成员 5A 的遗传功能丧失可预防糖尿病周围神经病变

阅读:3
作者:Hung-Wei Kan #, Chin-Hong Chang #, Ying-Shuang Chang, Yi-Ting Ko, Yu-Lin Hsieh

Abstract

We investigated the mediating roles of activating transcription factor 3 (ATF3), an injury marker, or C-type lectin member 5A (CLEC5A), an inflammatory response molecule, in the induction of endoplasmic reticulum (ER) stress and neuroinflammation in diabetic peripheral neuropathy in ATF3 and CLEC5A genetic knockout (aft3-/- and clec5a-/-, respectively) mice. ATF3 was expressed intranuclearly and was upregulated in mice with diabetic peripheral neuropathy (DN) and clec5a-/- mice. The DN and clec5a-/- groups also exhibited neuropathic behavior, but not in the aft3-/- group. The upregulation profiles of cytoplasmic polyadenylation element-binding protein, a protein translation-regulating molecule, and the ER stress-related molecules of inositol-requiring enzyme 1α and phosphorylated eukaryotic initiation factor 2α in the DN and clec5a-/- groups were correlated with neuropathic behavior. Ultrastructural evidence confirmed ER stress induction and neuroinflammation, including microglial enlargement and proinflammatory cytokine release, in the DN and clec5a-/- mice. By contrast, the induction of ER stress and neuroinflammation did not occur in the aft3-/- mice. Furthermore, the mRNA of reactive oxygen species-removing enzymes such as superoxide dismutase, heme oxygenase-1, and catalase were downregulated in the DN and clec5a-/- groups but were not changed in the aft3-/- group. Taken together, the results indicate that intraneuronal ATF3, but not CLEC5A, mediates the induction of ER stress and neuroinflammation associated with diabetic neuropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。