SOS1 promotes epithelial-mesenchymal transition of Epithelial Ovarian Cancer(EOC) cells through AKT independent NF-κB signaling pathway

SOS1通过AKT独立的NF-κB信号通路促进上皮性卵巢癌(EOC)细胞的上皮-间质转化

阅读:6
作者:Min Cheng, Xiaolin Ye, Jiemin Dai, Feiji Sun

Abstract

We aimed to explore the role and mechanism of SOS1 (Son of sevenless homolog 1) in malignant behaviors of epithelial ovarian cancer (EOC) cells Hey with high metastatic potential. Firstly, compared with Hey-WT (wild type) and Hey-NT (none targeted) cells, Hey-SOS1i cells showed decreased polarities, disorders in cytoskeleton arrangement. Numbers of transwell migrated, invaded, intravasation cells and extravasated cells were decreased significantly. Hey-NT cells and Hey-SOS1i cells were employed to establish a peritoneal dissemination model in nude mice. Hey-SOS1i cells formed less implantation metastatic foci in the abdominal cavity than Hey-NT cells, especially on the intestine and diaphragm in the 5th week after the tumor cells were injected intraperitoneally. SOS1 knockdown in Hey cells resulted in increased E-cadherin and decreased Vimentin, N-cadherin, MMP2, and MMP9, together with reduced Snail and activation of NF-κB pathway. Together, these results suggest SOS1 might induce EMT through activating AKT independent NF-κB pathway and the transcriptive activity of Snail, and subsequently regulate the cytoskeleton reprogramming and cell motility of Hey, one of EOC cells with high metastatic potential. This may provide some new targets for the treatment of ovarian cancer with high metastatic potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。