Improved Small Extracellular Vesicle Secretion of Rat Adipose-Derived Stem Cells by Microgrooved Substrates through Upregulation of the ESCRT-III-Associated Protein Alix

微槽基质通过上调 ESCRT-III 相关蛋白 Alix 促进大鼠脂肪干细胞小细胞外囊泡分泌

阅读:5
作者:Yuyong Ji, Weiju Han, Xiaoling Fu, Jing Li, Qi Wu, Yingjun Wang

Abstract

Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) hold great potential for regenerative therapies and have received considerable research attention in recent years. However, the use of MSC-sEVs is limited by very low yield in routine culture conditions and suboptimal potency for certain diseases. Thus, strategies that enable the production of sufficient quantities of sEVs with desired therapeutic cargo in a facile and inexpensive way are in high demand. This study finds that the microgrooved substrates stimulate rat adipose-derived mesenchymal stem cells (rASCs) to produce a larger quantity of sEVs than the flat substrates. Further investigation suggests that the ESCRT-III-associated protein Alix may be involved in mediating the elevated sEV production of rASCs on the microgrooved substrates. Besides, the cargo of sEVs is altered. SEVs secreted by rASCs on the microgrooved substrates carry higher levels of proangiogenic miRNAs and growth factors than those secreted by rASCs on the flat substrates. Functional assessments demonstrate that sEVs from rASCs on microgrooved substrates enhance the angiogenic properties of Human umbilical vein endothelial cells. The findings demonstrate that substrate topography is an effective regulator of the sEVs secretion by rASCs and highlight the potential of using microgrooved substrates as a platform to produce rASC-sEVs rich in pro-angiogenic factors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。