Multi-dimensional and longitudinal systems profiling reveals predictive pattern of severe COVID-19

多维度纵向系统分析揭示严重 COVID-19 的预测模式

阅读:4
作者:Marcel S Woo, Friedrich Haag, Axel Nierhaus, Dominik Jarczak, Kevin Roedl, Christina Mayer, Thomas T Brehm, Marc van der Meirschen, Annette Hennigs, Maximilian Christopeit, Walter Fiedler, Panagiotis Karagiannis, Christoph Burdelski, Alexander Schultze, Samuel Huber, Marylyn M Addo, Stefan Schmiedel

Abstract

COVID-19 is a respiratory tract infection that can affect multiple organ systems. Predicting the severity and clinical outcome of individual patients is a major unmet clinical need that remains challenging due to intra- and inter-patient variability. Here, we longitudinally profiled and integrated more than 150 clinical, laboratory, and immunological parameters of 173 patients with mild to fatal COVID-19. Using systems biology, we detected progressive dysregulation of multiple parameters indicative of organ damage that correlated with disease severity, particularly affecting kidneys, hepatobiliary system, and immune landscape. By performing unsupervised clustering and trajectory analysis, we identified T and B cell depletion as early indicators of a complicated disease course. In addition, markers of hepatobiliary damage emerged as robust predictor of lethal outcome in critically ill patients. This allowed us to propose a novel clinical COVID-19 SeveriTy (COST) score that distinguishes complicated disease trajectories and predicts lethal outcome in critically ill patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。