Actin-related protein 2/3 complex plays a critical role in the aquaporin-2 exocytotic pathway

肌动蛋白相关蛋白 2/3 复合物在水通道蛋白-2 胞吐途径中起关键作用

阅读:3
作者:Chen-Chung Steven Liu, Pui Wen Cheung, Anupama Dinesh, Noah Baylor, Theodor C Paunescu, Anil V Nair, Richard Bouley, Dennis Brown

Abstract

The trafficking of proteins such as aquaporin-2 (AQP2) in the exocytotic pathway requires an active actin cytoskeleton network, but the mechanism is incompletely understood. Here, we show that the actin-related protein (Arp)2/3 complex, a key factor in actin filament branching and polymerization, is involved in the shuttling of AQP2 between the trans-Golgi network (TGN) and the plasma membrane. Arp2/3 inhibition (using CK-666) or siRNA knockdown blocks vasopressin-induced AQP2 membrane accumulation and induces the formation of distinct AQP2 perinuclear patches positive for markers of TGN-derived clathrin-coated vesicles. After a 20°C cold block, AQP2 formed perinuclear patches due to continuous endocytosis coupled with inhibition of exit from TGN-associated vesicles. Upon rewarming, AQP2 normally leaves the TGN and redistributes into the cytoplasm, entering the exocytotic pathway. Inhibition of Arp2/3 blocked this process and trapped AQP2 in clathrin-positive vesicles. Taken together, these results suggest that Arp2/3 is essential for AQP2 trafficking, specifically for its delivery into the post-TGN exocytotic pathway to the plasma membrane.NEW & NOTEWORTHY Aquaporin-2 (AQP2) undergoes constitutive recycling between the cytoplasm and plasma membrane, with an intricate balance between endocytosis and exocytosis. By inhibiting the actin-related protein (Arp)2/3 complex, we prevented AQP2 from entering the exocytotic pathway at the post-trans-Golgi network level and blocked AQP2 membrane accumulation. Arp2/3 inhibition, therefore, enables us to separate and target the exocytotic process, while not affecting endocytosis, thus allowing us to envisage strategies to modulate AQP2 trafficking and treat water balance disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。