Niche partitioning of bacterial communities along the stratified water column in the Black Sea

黑海水柱沿线细菌群落的生态位划分

阅读:3
作者:Mariia Pavlovska, Ievgeniia Prekrasna, Evgen Dykyi, Andrii Zotov, Artem Dzhulai, Alina Frolova, Jaroslav Slobodnik, Elena Stoica

Abstract

The Black Sea is the largest semi-closed permanently anoxic basin on our planet with long-term stratification. The study aimed at describing the Black Sea microbial community taxonomic and functional composition within the range of depths spanning across oxic/anoxic interface, and to uncover the factors behind both their vertical and regional differentiation. 16S rRNA gene MiSeq sequencing was applied to get the data on microbial community taxonomy, and the PICRUSt pipeline was used to infer their functional profile. The normoxic zone was mainly inhabited by primary producers and heterotrophic prokaryotes (e.g., Flavobacteriaceae, Rhodobacteraceae, Synechococcaceae) whereas the euxinic zone-by heterotrophic and chemoautotrophic taxa (e.g., MSBL2, Piscirickettsiaceae, and Desulfarculaceae). Assimilatory sulfate reduction and oxygenic photosynthesis were prevailing within the normoxic zone, while the role of nitrification, dissimilatory sulfate reduction, and anoxygenic photosynthesis increased in the oxygen-depleted water column part. Regional differentiation of microbial communities between the Ukrainian shelf and offshore zone was detected as well, yet it was significantly less pronounced than the vertical one. It is suggested that regional differentiation within a well-oxygenated zone is driven by the difference in phytoplankton communities providing various substrates for the prokaryotes, whereas redox stratification is the main driving force behind microbial community vertical structure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。