MicroRNA-744-5p inhibits glioblastoma malignancy by suppressing replication factor C subunit 2

MicroRNA-744-5p 通过抑制复制因子 C 亚基 2 来抑制胶质母细胞瘤恶性肿瘤

阅读:6
作者:Fei Fan, Dongxiao Yao, Pengfei Yan, Xiaobing Jiang, Jie Hu

Abstract

Glioblastoma (GBM) is the most common malignant primary brain tumor, accounting for ~57% of all gliomas and 48% of all malignant primary central nervous system tumors in the United States. Abnormal expression of the replication factor C subunit 2 (RFC2) gene and microRNA (miR)-744-5p is associated with tumorigenic characteristics, including cellular proliferation, migration and invasiveness. However, the mechanism underlying the interaction between miR-744-5p and RFC2 in GBM remains unknown. Reverse transcription-quantitative (RT-q) PCR analysis of RFC2 and miR-744-5p was performed using GBM tumor tissues and cells, and the association between miR-744-5p and RFC2 was determined by dual-luciferase reporter assay. Cell Counting Kit 8, 5-bromo-2-deoxyuridine (BrdU), wound-healing and cellular adhesion assays, as well as the detection of caspase-3 activity and western blotting were used to detect cellular proliferation, migration and adhesion, caspase-3 activity, and Bax and Bcl-2 protein expression, respectively, in GBM cells. The results of the present study demonstrated that RFC2 expression was increased in GBM tissues and cell lines. Overexpression of RFC2 promoted cellular proliferation, migration, adhesion and an increase in Bcl-2 protein levels, and suppressed cellular caspase-3 activity and Bax protein expression, while silencing RFC2 resulted in the opposite effect. The effects of miR-744-5p inhibition were similar to those of RFC2 overexpression. Moreover, miR-744-5p was found to target RFC2 in GBM cells, and inhibiting the expression of RFC2 suppressed GBM tumorigenesis. In conclusion, the present study demonstrated that miR-744-5p targets RFC2 and suppresses the progression of GBM by repressing cellular proliferation, migration and Bcl-2 protein expression, and effectively promoting caspase-3 activity and Bax protein expression. These findings suggest a new target for the clinical treatment and improved prognosis of patients with GBM in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。