Melatonin alleviated oxidative stress induced by energy restriction on sheep Leydig cells through Sirt1/Sod2 pathway

褪黑素通过 Sirt1/Sod2 通路缓解能量限制引起的绵羊 Leydig 细胞氧化应激

阅读:4
作者:Jianyu Ma, Hua Yang, Liang Liu, Yongjie Wan, Feng Wang

Abstract

Energy balance is essential for normal reproduction of ram. However, the effect of energy restriction (ER) on reactive oxygen species (ROS) of sheep Leydig cells (LCs) and the rescuee methods are still unclear. To investigate the in vitro effect of melatonin on cellular ROS in fER-treated sheep LCs and explore the underlying mechanism, Hu sheep LCs were restricted energy using no serum culture medium and resaved with 10 ng/ml melatonin, respectively. The results showed that ER significantly increased MDA level, while decreased CAT, GHS-px expression and ΔΨm (p < 0.05). Meanwhile, ER decreased testosterone concentration and cell proliferation rate (p < 0.05). And the expression of testosterone synthesis-related enzymes was also down-regulated by ER (p < 0.05). Furthermore, we revealed that melatonin reversed the defective phenotypes in ER-treated LCs via Sirt1/Sod2 pathway. The interference of Sirt1 abolished the melatonin-mediated improvement of cellular ROS and testosterone secretion. Taken together, our study firstly indicated that melatonin could alleviate the excessive ROS accumulation and promote testosterone biosynthesis in ER-treated sheep LCs via the activation of Sirt1/Sod2 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。