Imaging, spectroscopy, mechanical, alignment and biocompatibility studies of electrospun medical grade polyurethane (Carbothane™ 3575A) nanofibers and composite nanofibers containing multiwalled carbon nanotubes

电纺医用级聚氨酯 (Carbothane™ 3575A) 纳米纤维和含有多壁碳纳米管的复合纳米纤维的成像、光谱、机械、排列和生物相容性研究

阅读:10
作者:Faheem A Sheikh, Javier Macossay, Travis Cantu, Xujun Zhang, M Shamshi Hassan, M Esther Salinas, Chakavak S Farhangi, Hassan Ahmad, Hern Kim, Gary L Bowlin

Abstract

In the present study, we discuss the electrospinning of medical grade polyurethane (Carbothane™ 3575A) nanofibers containing multi-walled-carbon-nanotubes (MWCNTs). A simple method that does not depend on additional foreign chemicals has been employed to disperse MWCNTs through high intensity sonication. Typically, a polymer solution consisting of polymer/MWCNTs has been electrospun to form nanofibers. Physiochemical aspects of prepared nanofibers were evaluated by SEM, TEM, FT-IR and Raman spectroscopy, confirming nanofibers containing MWCNTs. The biocompatibility and cell attachment of the produced nanofiber mats were investigated while culturing them in the presence of NIH 3T3 fibroblasts. The results from these tests indicated non-toxic behavior of the prepared nanofiber mats and had a significant attachment of cells towards nanofibers. The incorporation of MWCNTs into polymeric nanofibers led to an improvement in tensile stress from 11.40 ± 0.9 to 51.25 ± 5.5 MPa. Furthermore, complete alignment of the nanofibers resulted in an enhancement on tensile stress to 72.78 ± 5.5 MPa. Displaying these attributes of high mechanical properties and non-toxic nature of nanofibers are recommended for an ideal candidate for future tendon and ligament grafts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。