Escalating Catalytic Activity for Hydrogen Evolution Reaction on MoSe2@Graphene Functionalization

MoSe2@Graphene 功能化催化剂增强析氢反应活性

阅读:16
作者:Hoa Thi Bui, Nguyen Duc Lam, Do Chi Linh, Nguyen Thi Mai, HyungIl Chang, Sung-Hwan Han, Vu Thi Kim Oanh, Anh Tuan Pham, Supriya A Patil, Nguyen Thanh Tung, Nabeen K Shrestha

Abstract

Developing highly efficient and durable hydrogen evolution reaction (HER) electrocatalysts is crucial for addressing the energy and environmental challenges. Among the 2D-layered chalcogenides, MoSe2 possesses superior features for HER catalysis. The van der Waals attractions and high surface energy, however, stack the MoSe2 layers, resulting in a loss of edge active catalytic sites. In addition, MoSe2 suffers from low intrinsic conductivity and weak electrical contact with active sites. To overcome the issues, this work presents a novel approach, wherein the in situ incorporated diethylene glycol solvent into the interlayers of MoSe2 during synthesis when treated thermally in an inert atmosphere at 600 °C transformed into graphene (Gr). This widened the interlayer spacing of MoSe2, thereby exposing more HER active edge sites with high conductivity offered by the incorporated Gr. The resulting MoSe2-Gr composite exhibited a significantly enhanced HER catalytic activity compared to the pristine MoSe2 in an acidic medium and demonstrated a superior HER catalytic activity compared to the state-of-the-art Pt/C catalyst, particularly at a high current density beyond ca. 55 mA cm-2. Additionally, the MoSe2-Gr catalyst demonstrated long-term electrochemical stability during HER. This work, thus, presents a facile and novel approach for obtaining an efficient MoSe2 electrocatalyst applicable in green hydrogen production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。