Downregulation of the CCL2/CCR2 and CXCL10/CXCR3 axes contributes to antitumor effects in a mouse model of malignant glioma

CCL2/CCR2 和 CXCL10/CXCR3 轴的下调有助于恶性胶质瘤小鼠模型中的抗肿瘤作用

阅读:4
作者:Kenji Shono #, Izumi Yamaguchi #, Yoshifumi Mizobuchi, Hiroshi Kagusa, Akiko Sumi, Toshitaka Fujihara, Kohei Nakajima, Keiko T Kitazato, Kazuhito Matsuzaki, Hideyuki Saya, Yasushi Takagi

Abstract

Glioblastoma multiforme involves glioma stem cells (GSCs) that are resistant to various therapeutic approaches. Here, we studied the importance of paracrine signaling in the glioma microenvironment by focusing on the celecoxib-mediated role of chemokines C-C motif ligand 2 (CCL2), C-X-C ligand 10 (CXCL10), and their receptors, CCR2 and CXCR3, in GSCs and a GSC-bearing malignant glioma model. C57BL/6 mice were injected with orthotopic GSCs intracranially and divided into groups administered either 10 or 30 mg/kg celecoxib, or saline to examine the antitumor effects associated with chemokine expression. In GSCs, we analyzed cell viability and expression of chemokines and their receptors in the presence/absence of celecoxib. In the malignant glioma model, celecoxib exhibited antitumor effects in a dose dependent manner and decreased protein and mRNA levels of Ccl2 and CxcL10 and Cxcr3 but not of Ccr2. CCL2 and CXCL10 co-localized with Nestin+ stem cells, CD16+ or CD163+ macrophages and Iba-1+ microglia. In GSCs, celecoxib inhibited Ccl2 and Cxcr3 expression in a nuclear factor-kappa B-dependent manner but not Ccr2 and CxcL10. Moreover, Ccl2 silencing resulted in decreased GSC viability. These results suggest that celecoxib-mediated regulation of the CCL2/CCR2 and CXCL10/ CXCR3 axes may partially contribute to glioma-specific antitumor effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。