Detection of Epstein-Barr virus genomes in peripheral blood B cells from solid-organ transplant recipients by fluorescence in situ hybridization

荧光原位杂交技术检测实体器官移植受者外周血 B 细胞中的 Epstein-Barr 病毒基因组

阅读:6
作者:Camille Rose, Michael Green, Steven Webber, Lawrence Kingsley, Roger Day, Simon Watkins, Jorges Reyes, David Rowe

Abstract

Resolution of Epstein-Barr Virus (EBV) infection in pediatric solid-organ transplant recipients often leads to an asymptomatic carrier state characterized by a persistently elevated circulating EBV load that is 2 to 4 orders of magnitude greater than the load typical of healthy latently infected individuals. Elevated EBV loads in immunosuppressed individuals are associated with an increased risk for development of posttransplant lymphoproliferative disease. We have performed fluorescence in situ hybridization (FISH) studies with peripheral blood B cells from carriers of persistent EBV loads in order to directly quantitate the number of EBV genomes per infected cell. Patients were assigned to two groups on the basis of the level of the persistent load (low-load carriers, 8 to 200 genomes/10(5) peripheral blood lymphocytes; high-load carriers, >200 genomes/10(5) peripheral blood lymphocytes). FISH analysis revealed that the low-load carriers predominantly had circulating virus-infected cells harboring one or two genome copies/cell. High-load carriers also had cells harboring one or two genome copies/cell; in addition, however, they carried a distinct population of cells with high numbers of viral genome copies. The increased viral loads correlated with an increase in the frequency of cells containing high numbers of viral genomes. We conclude that low-load carriers possess EBV-infected cells that are in a state similar to normal latency, whereas high-load carriers possess two populations of virus-positive B cells, one of which carries an increased number of viral genomes per cell and is not typical of normal latency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。