Shape readout of AT-rich DNA by carbohydrates

通过碳水化合物读取富含 AT 的 DNA 的形状

阅读:6
作者:Sunil Kumar, Meredith Newby Spano, Dev P Arya

Abstract

Gene expression can be altered by small molecules that target DNA; sequence as well as shape selectivities are both extremely important for DNA recognition by intercalating and groove-binding ligands. We have characterized a carbohydrate scaffold (1) exhibiting DNA "shape readout" properties. Thermodynamic studies with 1 and model duplex DNAs demonstrate the molecule's high affinity and selectivity towards B* form (continuous AT-rich) DNA. Isothermal titration calorimetry (ITC), circular dichroism (CD) titration, ultraviolet (UV) thermal denaturation, and Differential Scanning Calorimetry were used to characterize the binding of 1 with a B* form AT-rich DNA duplex d[5'-G2 A6 T6 C2 -3']. The binding constant was determined using ITC at various temperatures, salt concentrations, and pH. ITC titrations were fit using a two-binding site model. The first binding event was shown to have a 1:1 binding stoichiometry and was predominantly entropy-driven with a binding constant of approximately 10(8) M(-1) . ITC-derived binding enthalpies were used to obtain the binding-induced change in heat capacity (ΔCp ) of -225 ± 19 cal/mol·K. The ionic strength dependence of the binding constant indicated a significant electrolytic contribution in ligand:DNA binding, with approximately four to five ion pairs involved in binding. Ligand 1 displayed a significantly higher affinity towards AT-tract DNA over sequences containing GC inserts, and binding experiments revealed the order of binding affinity for 1 with DNA duplexes: contiguous B* form AT-rich DNA (d[5'-G2 A6 T6 C2 -3']) >B form alternate AT-rich DNA (d[5'-G2 (AT)6 C2- 3']) > A form GC-rich DNA (d[5'-A2 G6 C6 T2 -3']), demonstrating the preference of ligand 1 for B* form DNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。