Triptolide potentiates the cytoskeleton-stabilizing activity of cyclosporine A in glomerular podocytes via a GSK3β dependent mechanism

雷公藤甲素通过 GSK3β 依赖机制增强环孢素 A 在肾小球足细胞中的细胞骨架稳定活性

阅读:7
作者:Xianhui Liang, Bohan Chen, Pei Wang, Yan Ge, Deepak K Malhotra, Lance D Dworkin, Zhangsuo Liu, Rujun Gong

Abstract

Tripterygium wilfordii Hook F. (TwHF) is a traditional Chinese herb and has a broad spectrum of biological functions including immunosuppression and anti-inflammatory effects. When used in combination with other standard of care medications, such as glucocorticoids and calcineurin inhibitors like cyclosporine A, for treating glomerular diseases, TwHF demonstrates a remarkable dose-sparing effect, the molecular mechanism for which remains largely unknown. In an in vitro model of podocytopathy elicited by a diabetic milieu, triptolide, the major active component of TwHF, at low doses, potentiated the beneficial effect of cyclosporine A, and protected podocytes against diabetic milieu-elicited injury, mitigated cytoskeleton derangement, and preserved podocyte filtration barrier function, entailing a synergistic cytoskeleton-preserving and podocyte protective effect of triptolide and cyclosporine A. Mechanistically, inhibitory phosphorylation of GSK3β, a key molecule recently implicated as a convergence point of podocytopathic pathways, is likely required for the synergistic effect of triptolide and cyclosporine A on podocyte protection, because the synergistic effect was largely blunted in cells expressing the constitutively active GSK3β. Ergo, a synergistic podocyte cytoskeleton-stabilizing mechanism seems to underlie the cyclosporine A-sparing effect of triptolide in glomerulopathies. Combined triptolide and cyclosporine A therapy at reduced doses may be an invaluable regimen for treating diabetic nephropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。