TCL1A in naïve B cells as a therapeutic target for type 1 diabetes

幼稚 B 细胞中的 TCL1A 作为 1 型糖尿病的治疗靶点

阅读:6
作者:Siweier Luo, Lina Zhang, Chunfang Wei, Chipeng Guo, Zhe Meng, Honghui Zeng, Lele Hou, Le Wang, Zulin Liu, Yufei Du, Shiyu Tan, Yating Zhang, Xiaoding Xu, Liyang Liang, Yiming Zhou

Background

Type 1 diabetes (T1D) is an autoimmune disease characterised by the attack of pancreatic β cells by "self" immune cells. Although previous studies demonstrated that B cells contribute to T1D through antigen presentation and autoantibody production, the involvement of different populations of B cells, particularly in the early stages of T1D, has not been fully elucidated.

Methods

In this study, we employed single-cell RNA sequencing (scRNA-seq) and flow cytometry to investigate immune cell populations in patients with newly diagnosed T1D, their relative controls and age-matched healthy controls. Phosphoprotein microarray analysis was employed to investigate changes in protein phosphorylation in B cells. Furthermore, we developed a siRNA-based nanomedicine and evaluated its therapeutic potential in the NOD mouse. The integration of scRNA-seq, flow cytometry, phosphoprotein microarrays, and functional assays established a robust framework for understanding and targeting B cell-mediated autoimmunity in T1D. Findings: Using single-cell RNA sequencing, we discovered that patients with T1D exhibited increased humoural immunity in the early stage of T1D. Specifically, the population of naïve B cells increased in patients with newly diagnosed T1D who expressed elevated levels of the AKT kinase coactivator TCL1A. Using a protein phosphorylation microarray, we confirmed that TCL1A knockdown specifically impaired AKT2 phosphorylation and affected B cell survival and proliferation. Notably, we discovered that the naïve B cell population increased and TCL1A expression was upregulated in NOD mice that developed T1D. Both the levels of naïve B cells and TCL1A were strongly associated with glucose intolerance in T1D mice. Importantly, treatment with a siRNA-based nanomedicine targeting Tcl1a mRNA effectively reduced the number of naïve B cells, prevented the loss of pancreatic β cells, and improved glucose intolerance in T1D mice. Interpretation: Using single-cell RNA-seq, we have not only uncovered a naïve B cell specific gene that may contribute to the pathogenesis of T1D but also highlighted the potential of siRNA-based nanomedicine for treating T1D. The clinical translation of these findings offers a new approach for the treatment of T1D. Funding: See Acknowledgements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。