Motor neuron disease due to neuropathy target esterase mutation: enzyme analysis of fibroblasts from human subjects yields insights into pathogenesis

由于神经病变靶标酯酶突变导致的运动神经元疾病:对人类受试者成纤维细胞的酶分析有助于深入了解发病机制

阅读:6
作者:Nichole D Hein, Shirley R Rainier, Rudy J Richardson, John K Fink

Abstract

Recently, we identified neuropathy target esterase (NTE) mutation as the cause of an autosomal recessive motor neuron disease (NTE-MND). Subsequently, we showed that NTE-MND mutations reduced specific activity (SA) and altered inhibitory kinetics of NTE catalytic domain constructs. Recent preliminary results showed that NTE is expressed in cultured human skin fibroblasts, and others have used mutant forms of neuronal proteins expressed in fibroblasts as biomarkers of neurogenetic diseases. Therefore, the present study was carried out to test the hypothesis that NTE in cultured skin fibroblasts from NTE-MND subjects also exhibit altered enzymological properties assessed by SA and IC(50) values of mipafox (MIP) and chlorpyrifos oxon (CPO). NTE SA was reduced to 65% of control (wild-type NTE from commercially obtained fibroblasts) in homozygous M1012V fibroblasts and 59-61% of control in compound heterozygous R890H/c2946_2947InsCAGC fibroblasts. MIP IC(50) values were unaffected by the NTE mutations, but the CPO IC(50) increased 4.5-fold in homozygous M1012V fibroblasts. Interestingly, markedly reduced NTE SAs (40-43% of control) were observed in fibroblasts from asymptomatic subjects heterozygous for NTE insertion c2946_2947InsCAGC. This insertion is predicted to produce truncated NTE missing the last 235 residues of its catalytic domain. These observations confirm that NTE-MND mutations reduce NTE SA in vitro. Moreover, to the extent observations made in cultured fibroblasts may be generalized to events in the nervous system, lack of correlation between reduced fibroblast NTE SA and the occurrence of NTE-MND in NTE insertion mutation heterozygotes indicates that reduction of NTE SA alone is insufficient to cause MND.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。