Inhibition of the soluble epoxide hydrolase by tyrosine nitration

酪氨酸硝化对可溶性环氧化物水解酶的抑制

阅读:7
作者:Eduardo Barbosa-Sicard, Timo Frömel, Benjamin Keserü, Ralf P Brandes, Christophe Morisseau, Bruce D Hammock, Thomas Braun, Marcus Krüger, Ingrid Fleming

Abstract

Inhibition of the soluble epoxide hydrolase (sEH) has beneficial effects on vascular inflammation and hypertension indicating that the enzyme may be a promising target for drug development. As the enzymatic core of the hydrolase domain of the human sEH contains two tyrosine residues (Tyr(383) and Tyr(466)) that are theoretically crucial for enzymatic activity, we addressed the hypothesis that the activity of the sEH may be affected by nitrosative stress. Epoxide hydrolase activity was detected in human and murine endothelial cells as well in HEK293 cells and could be inhibited by either authentic peroxynitrite (ONOO(-)) or the ONOO(-) generator 3-morpholino-sydnonimine (SIN-1). Protection of the enzymatic core with 1-adamantyl-3-cyclohexylurea in vitro decreased sensitivity to SIN-1. Both ONOO(-) and SIN-1 elicited the tyrosine nitration of the sEH protein and mass spectrometry analysis of tryptic fragments revealed nitration on several tyrosine residues including Tyr(383) and Tyr(466). Mutation of the latter residues to phenylalanine was sufficient to abrogate epoxide hydrolase activity. In vivo, streptozotocin-induced diabetes resulted in the tyrosine nitration of the sEH in murine lungs and a significant decrease in its activity. Taken together, these data indicate that the activity of the sEH can be regulated by the tyrosine nitration of the protein. Moreover, nitrosative stress would be expected to potentiate the physiological actions of arachidonic acid epoxides by preventing their metabolism to the corresponding diols.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。