Renal ultrasonographic shear-wave elastography and urinary procollagen type III amino-terminal propeptide in chronic kidney disease dogs

慢性肾脏病犬肾脏超声剪切波弹性成像和尿液 III 型前胶原氨基末端前肽

阅读:6
作者:Chutimon Thanaboonnipat, Saikaew Sutayatram, Chollada Buranakarl, Nan Choisunirachon

Aim

Renal fibrosis is a well-established pathological alteration associated with chronic kidney disease (CKD) in several species and progresses as CKD advances. Although a renal biopsy is the gold standard for determining renal fibrosis, it is an invasive, impractical method for clinical practice. In humans, ultrasonographic shear-wave elastography (SWE), a novel advanced diagnostic imaging tool, can evaluate renal parenchyma stiffness, and urinary procollagen type III amino-terminal propeptide (uPIIINP), a promising renal fibrosis biomarker in humans, has increasingly been use applied to reduce the biopsies. This study compares renal tissue elasticity observed through SWE Young's modulus (E) values between healthy dogs (HD) and those with CKD. Materials and

Conclusion

SWE offers a complementary, non-invasive diagnostic imaging tool for evaluating renal tissue stiffness in CKD dogs with renal function deterioration. In addition, uPIIINP levels are associated with renal function and structural changes in dogs. Therefore, the uPIIINP level might be a non-invasive, complementary, and promising biomarker for evaluating renal fibrosis in canine CKD.

Methods

The E value acquired by SWE, uPIIINP levels, and renal function were evaluated in 15 CKD dogs and 15 HD.

Results

The renal cortical E values were significantly higher than the renal medullary E values in both groups (p<0.001). Renal cortical and medullary E values in CKD dogs were significantly higher than in HD (p<0.01). Cortical E values had greater significant correlations with renal functional parameters than the medullary E values and had a significant positive correlation with concentrations of plasma creatinine (Cr) (p<0.001); blood urea nitrogen (p<0.01); urine protein Cr ratio (p<0.01); and fractional excretions of sodium (p<0.05), potassium (p<0.05), chloride (p<0.05), and magnesium (p<0.001) while they had a negative correlation with urine specific gravity (p<0.05) and urine osmolality to plasma osmolality ratio (p<0.05). The uPIIINP to Cr (uPIIINP/Cr) ratios of CKD dogs were higher than those of HD (p<0.001). Moreover, the uPIIINP/Cr levels presented significant correlations with the renal cortical E values (p<0.01) and also the renal functional parameters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。