Ultrafast data mining of molecular assemblies in multiplexed high-density super-resolution images

多路复用高密度超分辨率图像中分子组装的超快速数据挖掘

阅读:5
作者:Yandong Yin, Wei Ting Chelsea Lee, Eli Rothenberg

Abstract

Multicolor single-molecule localization super-resolution microscopy has enabled visualization of ultrafine spatial organizations of molecular assemblies within cells. Despite many efforts, current approaches for distinguishing and quantifying such organizations remain limited, especially when these are contained within densely distributed super-resolution data. In theory, higher-order correlation such as the Triple-Correlation function is capable of obtaining the spatial configuration of individual molecular assemblies masked within seemingly discorded dense distributions. However, due to their enormous computational cost such analyses are impractical, even for high-end computers. Here, we developed a fast algorithm for Triple-Correlation analyses of high-content multiplexed super-resolution data. This algorithm computes the probability density of all geometric configurations formed by every triple-wise single-molecule localization from three different channels, circumventing impractical 4D Fourier Transforms of the entire megapixel image. This algorithm achieves 102-folds enhancement in computational speed, allowing for high-throughput Triple-Correlation analyses and robust quantification of molecular complexes in multiplexed super-resolution microscopy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。