Fabrication of CL-20/HMX Cocrystal@Melamine-Formaldehyde Resin Core-Shell Composites Featuring Enhanced Thermal and Safety Performance via In Situ Polymerization

通过原位聚合制备具有增强热性能和安全性能的 CL-20/HMX 共晶@三聚氰胺-甲醛树脂核壳复合材料

阅读:4
作者:Binghui Duan, Xianming Lu, Hongchang Mo, Bojun Tan, Bozhou Wang, Ning Liu

Abstract

Safety concerns remain a bottleneck for the application of 2,4,6,8,10,12-hexanitro- 2,4,6,8,10,12-hexaazaisowurtzitane (CL-20)/1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) cocrystal. Melamine-formaldehyde (MF) resin was chosen to fabricate CL-20/HMX cocrystal-based core-shell composites (CH@MF composites) via a facile in situ polymerization method. The resulted CH@MF composites were comprehensively characterized, and a compact core-shell structure was confirmed. The effects of the shell content on the properties of the composites were explored as well. As a result, we found that, except for CH@MF-2 with a 1% shell content, the increase in shell content led to a rougher surface morphology and more close-packed structure. The thermal decomposition peak temperature improved by 5.3 °C for the cocrystal enabled in 1.0 wt% MF resin. Regarding the sensitivity, the CH@MF composites exhibited a significantly reduced impact and friction sensitivity with negligible energy loss compared with the raw cocrystal and physical mixtures due to the cushioning and insulation effects of the MF coating. The formation mechanism of the core-shell micro-composites was further clarified. Overall, this work provides a green, facile and industrially potential strategy for the desensitization of energetic cocrystals. The CH@MF composites with high thermal stability and low sensitivity are promising to be applied in propellants and polymer-bonded explosive (PBX) formulations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。