Inhibitory effect of high leucine concentration on α-amylase secretion by pancreatic acinar cells: possible key factor of proteasome

高浓度亮氨酸抑制胰腺腺泡细胞分泌α-淀粉酶:蛋白酶体可能是关键因素

阅读:5
作者:Long Guo, Baolong Liu, Chen Zheng, Hanxun Bai, Hao Ren, Junhu Yao, Xiurong Xu

Abstract

The present study aimed to investigate whether leucine affects the pancreatic exocrine by controlling the antisecretory factor (AF) and cholecystokinin receptor (CCKR) expression as well as the proteasome activity in pancreatic acinar cells of dairy calves. The pancreatic acinar cells were isolated from newborn Holstein bull calves and cultured using the Dulbecco's modified Eagle's medium/nutrient mixture F12 Ham's liquid (DMEM/F12). There were six treatments of leucine dosage including 0 (control), 0.23, 0.45, 1.35, 4.05, and 12.15 mM, respectively. After culture for 3 h, the samples were collected for subsequent analysis. As the leucine concentration increased from 0 to 1.35 mM, the α-amylase activity in media decreased significantly (P<0.05), while further increase in leucine concentration did not show any decrease in α-amylase activity. Addition of leucine inhibited (P<0.05) the expression of AF and CCKR, and decreased the activity of proteasome (P<0.05) by 76%, 63%, 24%, 7%, and 9%, respectively. Correlation analysis results showed α-amylase secretion was negatively correlated with leucine concentration (P<0.01), and positively correlated with proteasome activity (P<0.01) and the expression of CCK1R (P<0.01) and AF (P<0.05). The biggest regression coefficient was showed between α-amylase activity and proteasome (0.7699, P<0.001). After inhibition of proteasome by MG-132, low dosage leucine decreased (P<0.05) the activity of proteasome and α-amylase, as well as the expression of CCK1R. In conclusion, we demonstrated that the high-concentration leucine induced decrease in α-amylase release was mainly by decreasing proteasome activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。