Intermittent fasting therapy promotes insulin sensitivity by inhibiting NLRP3 inflammasome in rat model

间歇性禁食疗法通过抑制大鼠模型中的 NLRP3 炎症小体来促进胰岛素敏感性

阅读:8
作者:Bing-Jun Liang, Sheng-Rong Liao, Wei-Xuan Huang, Chao Huang, Hao Sheng Liu, Wei-Zeng Shen

Background

Substantial studies have demonstrated that fasting therapy (FT) can inhibit the inflammatory response and improve insulin resistance (IR); however, the underlying mechanisms are still unclear. This study aimed to explore the related mechanisms of intermittent FT for the treatment of IR.

Conclusions

These results suggest that FT can ameliorate the high-fat diet-and STZ-induced IR in rats through inhibition of NLRP3 inflammasome.

Methods

A rat IR model was established through collaboration of a high-fat diet with streptozotocin (STZ) injection. 8 rats were treated with intermittent FT. A positive control group was treated with metformin (MET). Mouse 3T3-L1 pre-adipocytes were cultured and induced into adipocytes in vitro, and were used as the cellular IR model. Blood insulin, glucose, and homeostatic model assessment (HOMA)-IR index were determined. Enzyme-linked immunosorbent assay (ELISA) and western blotting were used to detect inflammatory markers. Oil Red O staining determined the lipid accumulation. An NLRP3 inflammasome agonist served to investigate the effects of FT on IR in 3T3-L1 adipocytes.

Results

The high levels of blood insulin, glucose, and HOMA-IR induced by high-fat diet and STZ were significantly decreased by FT. The FT also reduced the level of C-reactive protein (CRP), interleukin (IL)-1β, IL-18, caspase-1, and increased the expression of glucose transporter 1 (GLUT1), insulin receptor substrate 1 (IRS1), and IRS2 in both the rat models and 3T3-L1 adipocytes. In addition, FT significantly relieved lipid accumulation in the liver of rats. Application of NLRP3 inflammasome agonist weakened the effect of FT on IR in the IR 3T3-L1 adipocytes. Conclusions: These results suggest that FT can ameliorate the high-fat diet-and STZ-induced IR in rats through inhibition of NLRP3 inflammasome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。