The link between phenotype and fatty acid metabolism in advanced chronic kidney disease

晚期慢性肾病表型与脂肪酸代谢之间的联系

阅读:6
作者:Dan-Qian Chen, Hua Chen, Lin Chen, Nosratola D Vaziri, Ming Wang, Xiang-Ri Li, Ying-Yong Zhao

Background

The kidney plays a central role in elimination of metabolic waste products and regulation of low-molecular weight metabolites via glomerular filtration, tubular secretion and reabsorption. Disruption of these processes

Conclusions

Advanced CKD in rats with adenine-induced chronic interstitial nephropathy results in profound changes in the serum metabolome, activation of inflammatory, oxidative and fibrotic pathways, and suppression of cytoprotective and antioxidant pathways.

Methods

Male Sprague-Dawley rats were randomized to the CKD and control groups ( n = 8/group). CKD was induced by administration of adenine (200 mg/kg body weight/day) by oral gavage for 3 weeks. The control group was treated with the vehicle alone. The animals were then observed for an additional 3 weeks, at which point they were sacrificed and kidney and serum samples were collected. Serum metabolomic and lipidomic analyses were performed using ultra-performance liquid chromatography-quadrupole time-of-flight high-definition mass spectrometry. Kidney tissues were processed for histological and molecular biochemical analyses.

Results

CKD rats exhibited increased plasma urea and creatinine concentrations, renal interstitial fibrosis, tubular damage and up-regulation of pro-inflammatory, pro-oxidant and pro-fibrotic pathways. Comparison of serum from CKD and control rats revealed significant differences in concentrations of amino acids and lipids including 33 metabolites and 35 lipid species. This was associated with marked abnormalities of fatty acid oxidation, and γ-linolenic acid and linoleic acid metabolism in CKD rats. Logistic regression analysis identified tetracosanoic acid, docosatrienoic acid, PC(18:3/14:1) and l -aspartic acid, tetracosanoic acid and docosatrienoic acid as novel biomarkers of chronic interstitial nephropathy. Conclusions: Advanced CKD in rats with adenine-induced chronic interstitial nephropathy results in profound changes in the serum metabolome, activation of inflammatory, oxidative and fibrotic pathways, and suppression of cytoprotective and antioxidant pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。