Optimization of a Clinically Relevant Chemical-Mechanical Tissue Dissociation Workflow for Single-Cell Analysis

用于单细胞分析的临床相关化学机械组织解离工作流程的优化

阅读:5
作者:E Celeste Welch, Harry Yu, Anubhav Tripathi

Conclusions

Understanding cellular dissociation in ex vivo tissues is essential to the development of clinically relevant dissociation workflows. Controlled mechanical force in combination with chemical treatment produces high quality tissue dissociation. This research is relevant to the understanding and assessment of tissue dissociation and the establishment of an automated preparatory workflow for single cell diagnostics.

Methods

Frozen bovine liver biopsy cores were normalized by weight, dimension, and calculated cellular composition. Various chemical reagents were tested for their capability to dissociate the tissue via confocal microscopy, hemocytometry and quantitative flow cytometry. Images were processed using ImageJ. Quantitative flow cytometry with gating analysis was also used for the analysis of dissociation. Physical modeling simulations were conducted in COMSOL Multiphysics.

Results

A rapid method for tissue dissociation was developed for single-cell analysis techniques. The results of this study show that a combination of 1% type-1 collagenase and pronase or hyaluronidase in 100 U/µL HBSS solution is the most effective at dissociating 2.5 mm thawed bovine liver biopsy cores in 15 min, with dissociation efficiency of 37-42% and viability >90% as verified using live MDA-MB-231 cancer cells. Cellular dissociation is significantly improved by adding a controlled mechanical force during the chemical process, to dissociate 93 ± 8% of the entire tissue into single cells. Conclusions: Understanding cellular dissociation in ex vivo tissues is essential to the development of clinically relevant dissociation workflows. Controlled mechanical force in combination with chemical treatment produces high quality tissue dissociation. This research is relevant to the understanding and assessment of tissue dissociation and the establishment of an automated preparatory workflow for single cell diagnostics.

Supplementary Information

The online version of this article (10.1007/s12195-021-00667-y) contains supplementary material, which is available to authorized users.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。