A role of Pumilio 1 in mammalian oocyte maturation and maternal phase of embryogenesis

Pumilio 1 在哺乳动物卵母细胞成熟和胚胎发生母体阶段中的作用

阅读:5
作者:Winifred Mak, Jing Xia, Ee-Chun Cheng, Katie Lowther, Haifan Lin

Background

RNA binding proteins play a pivotal role during the oocyte-to-embryo transition and maternal phase of embryogenesis in invertebrates, but their function in these processes in mammalian systems remain largely understudied.

Conclusions

These findings indicate that PUM1 is essential in the process of cytoplasmic maturation and developmental competence of the oocyte. These results reveal an important function of maternal PUM1 as a post-transcriptional regulator during mammalian embryogenesis.

Results

Here we report that a member of the Pumilio/FBF family of RNA binding proteins in mice, Pumilio 1 (Pum1), is a maternal effect gene. The absence of maternal PUM1 in the oocyte does not affect meiotic maturation but leads to abnormal preimplantation development. Furthermore, genome-wide transcriptome analysis of oocytes and embryos revealed that there is a concomitant perturbation of the mRNA milieu. Of note, putative PUM1 mRNA targets were equally perturbed as non-direct targets, which indicates that PUM1 regulates the stability of maternal mRNAs both directly and indirectly. We show Cdk1 mRNA, a known PUM1 target essential for meiosis and preimplantation development, is not degraded appropriately during meiosis, leading to an increase in CDK1 protein in mature oocytes, which indicates that PUM1 post-transcriptionally regulates Cdk1 mRNA; this could partially explain the observed abnormal preimplantation development. Furthermore, our results show that maternal and zygotic PUM1 are required for postnatal survival. Conclusions: These findings indicate that PUM1 is essential in the process of cytoplasmic maturation and developmental competence of the oocyte. These results reveal an important function of maternal PUM1 as a post-transcriptional regulator during mammalian embryogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。