DYRK1A phosphorylates MEF2D and decreases its transcriptional activity

DYRK1A 磷酸化 MEF2D 并降低其转录活性

阅读:6
作者:Pin Wang, Juan Zhao, Xiulian Sun

Abstract

Myocyte enhancer factor 2D (MEF2D) is predominantly expressed in the nucleus and associated with cell growth, differentiation, survival and apoptosis. Previous studies verified that phosphorylation at different amino acids determined MEF2's transcriptional activity which was essential in regulating downstream target genes expression. What regulates phosphorylation of MEF2D and affects its function has not been fully elucidated. Here, we uncovered that dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A), a kinase critical in Down's syndrome pathogenesis, directly bound to and phosphorylated MEF2D at Ser251 in vitro. Phosphorylation of MEF2D by DYRK1A significantly increased MEF2D protein level but attenuated its transcriptional activity, which resulted in decreased transcriptions of MEF2D target genes. Phosphorylation mutated Ser251A MEF2D exhibited enhanced transcriptional activity compared with wild type MEF2D. MEF2D and DYRK1A were observed co-localized in HEK293 and U87MG cells. Moreover, DYRK1A-mediated MEF2D phosphorylation in vitro might influence its nuclear export upon subcellular fractionation, which partially explained the reduction of MEF2D transcriptional activity by DYRK1A. Our results indicated that DYRK1A might be a regulator of MEF2D transcriptional activity and indirectly get involved in regulation of MEF2D target genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。